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A b s t r a c t

Catecholamine signaling pathways in the peripheral and central nervous systems
(PNS, CNS, respectively) utilize catechol-O-methyltransferase (COMT) as a major
regulatory enzyme responsible for deactivation of dopamine (DA), norepinephrine
(NE) and epinephrine (E). Accordingly, homeostasis of COMT gene expression is
hypothesized to be functionally linked to regulation of autonomic control of
normotensive vascular events. Recently, we demonstrated that morphine
administration in vitro resulted in decreased cellular concentrations of COMT-
encoding mRNA levels, as compared to control values. In contrast, cells treated
with E up regulated their COMT gene expression. In sum, these observations
indicate a potential reciprocal linkage between end product inhibition of COMT
gene expression by E and morphine. Interestingly, the observed effects of
administered E on COMT gene expression suggest an enhancement of its own
catabolism or, reciprocally, a stimulation morphine biosynthesis. 
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A “morphinergic” signaling pathway in endothelial cells

We have recently demonstrated a functional regulatory pathway in
vascular endothelial cells driven by endogenous, chemically authentic,
morphine, its cognate opiate alkaloid-selective µ3 and µ4 receptors and
constitutive nitric oxide (NO) production and release [1-5]. Because
NO/cyclic guanosine monophosphate (cGMP) signaling events have been
well established as potent regulators of vasodilatation, it appears likely
that populations of endothelial cells are also entrained as physiological
regulators of normal vascular tone. Accordingly, µ3 and µ4 opiate receptors
may represent important potential therapeutic targets for restoring
normotensive vascular tone in hypertensive syndromes [1-5]. 

The presence of chemically authentic morphine has been demonstrated
in vascular endothelial cells obtained from human atria [5] and human
white blood cells (WBC), which also express µ3 and µ4 opiate receptors [1,
6], and several human cancer cell lines [1, 2, 5, 7, 8]. We have therefore
hypothesized that µ3 and µ4 opiate receptors coupled to constitutive NO
expression are tonically activated by low levels of endogenously expressed,
chemically authentic morphine [5], a contention that is consistent with
the presence of low levels of circulating morphine in human plasma 
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[9-11]. Provocatively, we have also characterized
a functionally competent µ3/µ4 receptor/NO-coupled
regulatory pathway in human multilineage
progenitor cells (MLPC) [12], thereby suggesting
a fundamental role of morphine/NO-coupled
developmental processes. 

One of the key physiological roles of the
“morphinergic”/NO-coupled regulatory pathway
appears to be the homeostatic maintenance of
normal vascular tone, which can only be achieved
by intimate association of the vascular endothelium
with circulating leukocytes. Endogenous morphine
derived from defined cellular sources and circulating
in plasma appears to provide an important
caretaker role in promoting coordinated, on
demand, vasomotor responsiveness, to diverse
physiological stimuli.

Shared “morphinergic”/catecholamine
biosynthetic enzymes

Based on recent elucidations of key functional
components of “morphinergic” signaling pathways,
it is likely that variations in gene expression of key
enzymes of the morphine biosynthetic pathway
may have profound effects on human health,

especially in immune and vascular tissues [13].
Furthermore, the establishment of dopamine (DA)
as a requisite intermediate precursor molecule in
the morphine biosynthetic pathway suggest that
perturbations of these biosynthetic enzymes will
significantly effect human behavioral responses to
cognitive and physiological stressors [13-18]. 

Previously published studies have established
catechol-O-methyltransferase (COMT) as a key
player in the morphine biosynthetic pathway
responsible for enzymatic conversion of tetra -
hydropapveroline (THP) to the methylated inter -
mediate precursor molecule (S)-reticuline [13, 16,
19]. Additionally, polymorphisms in other genes
involved in “morphinergic” and catecholamine
metabolic pathways, including tyrosine hydroxylase,
DOPA decarboxylase, dopamine β-hydroxylase, and
monoamine oxidase have not been as well studied
as COMT in terms of their effects on human health
[14-18, 20-25]. The most studied COMT poly -
morphism is termed val/met 158. This poly -
morphism has a methionine substituted for a valine
at amino acid 158 [26]. Ongoing studies are
attempting to establish a link between this
polymorphism and behavior [27]. The effect of this

Figure 1. Human vascular endothelial cells contain the µ3/µ4 opiate receptor subtype coupled to NO release, leading
to vasodilatation. Furthermore, vascular endothelial cells appear to express endogenous morphine, indicating an
autonomous autocrine/paracrine signaling pathway. Well established polymorphisms of the COMT gene are predicted
to result in significant alterations in morphine biosynthesis (discussed above). Alterations of COMT enzyme activity
will effectively result in diminished cellular concentrations of endogenous morphine with coordinate reductions of
NO signaling events, a compounded endpoint promoting enhanced vasoconstriction. Second, alterations of COMT
enzyme activity will effectively diminish catecholamine metabolism, with resultant enhancement of NE and E pressor
activity via α-adrenergic receptor activation
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polymorphism is a lowering of the activity of COMT
and thus a slower metabolism of DA [26, 28]. 

Recently we examined the effect of morphine
exposure on COMT gene expression in cancer cells
[29, 30]. Morphine administration was observed to
decrease cellular concentrations of COMT-encoding
mRNA in a time-dependent manner, thereby
suggesting a negative feedback regulatory process.
Interestingly, administration of E at 10–9M to
colonicadenocarcinoma cells at for 24 h was
observed to produce a 1.6 fold increase in levels of
COMT-encoding mRNA [30]. In sum, these
observations indicated a potential reciprocal linkage
between end product inhibition of COMT gene
expression by E and morphine. Interestingly, the
observed effects of administered E on COMT gene
expression suggest an enhancement of its own
catabolism or, reciprocally, a stimulation morphine
biosynthesis. 

Dopamine is a requisite intermediate precursor
molecule in the morphine biosynthetic pathway [13,
19, 31]. The intimate and interactive coupling of
“morphinergic” to dopaminergic behavioral
processes provide a cogent window of under -
standing additive behavioral processes. For 
example, initial speculation as to the existence and
potential physiological role of endogenous morphine
were made over 30 years ago by prominent
researchers in the field of alcohol abuse, not opiate
abuse, who advanced the hypothesis that the
reinforcing or additive effects of ethanol were
functionally linked to the cellular effects of DA
derived isoquinoline alkaloids, notably the
tetrahydroisoquinoline salsolinol [32-34] and the
benzylisoquinoline morphine precursor tetra -
hydropapaveroline (THP) [35-37]. Recognition of tetra -
hydroisoquinolines, THP, and endogenous mor -
phine as active principles of alcohol abuse was
inherently linked to their normal presence in
dopaminergic neurons, enhanced cellular expression
following chronic ethanol intake [37-42], and
concentration-dependent disregulation of DA
metabolism and/or dopaminergic signaling in
mesolimbic/mesocortical areas such as the nucleus
accumbens and the ventral tegmental area
traditionally associated with reward and
reinforcement of ethanol intake [15, 16, 43-51]. The
causal relationship and functional association of CNS
expression of tetrahydroisoquinoline and benzy -
lisoquinoline alkaloids to alcohol abuse remains
controversial despite anatomical, physiological,
pharmacological, and behavioral evidence linking
dopaminergic and opioidergic systems in limbic areas
associated with reinforcement of ethanol intake
behaviors [17, 21, 52-56]. 

This link is equally important when considering
animal behavior. It can be surmised that the DA
component modulates excitatory states, including

rage, whereas the morphinergic component offers
calming action associated with relaxation and
reward. This association may also explain the
calming effect following excitatory emotional
states. Moreover, in this scenario of DA synthesis
coming before that of morphine one would predict
excitation would precede the calm, which may be
associated with morphine signaling. Furthermore,
this coupling may also explain the fact that within
various relaxation techniques an excitatory stress
component emerges physiologically before
relaxation sets in [21-23, 48, 57]. The link between
catecholamine and morphine metabolism
promises to be the subject of future investigations
given its significance in biomedicine. This link is
critical in offering a novel explanation for
idiopathic hypertension via identification of
physiological deficits in vascular endothelial
“morphi nergic”/NO/catecholamine-coupled
signaling events. Investigation of the potential
involvement of COMT and its genetic
polymorphisms in metabolic/pathophysiological
states represents an area for intense biomedical
research advancement.       
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